Skip to main content

About

The Spike SDK provides a convenient interface for the Nutrition AI API, allowing you to analyze food images directly from your Flutter application. The SDK handles image encoding, API communication, and response parsing, making it easy to integrate nutritional analysis into your app.
All Spike SDK async methods return Future objects. Use try-catch blocks or .catchError() handlers for error handling. See Error Handling for details.

Key Features

  • AI-Powered Analysis — advanced computer vision for food identification and nutritional calculations
  • Flexible Processing — choose between synchronous (wait for results) or asynchronous (background) processing
  • Base64 Support — submit images as base64-encoded strings
  • Complete Record Management — retrieve, update, and delete nutrition records

Available Methods

MethodDescription
analyzeNutrition(imageBase64:, consumedAt:, config:)Submit food image for synchronous processing and wait for the analysis results
submitNutritionForAnalysis(imageBase64:, consumedAt:, config:)Submit food image for asynchronous processing and get record ID immediately for polling afterwards
getNutritionRecords(from:, to:)Retrieve nutrition records for a datetime range
getNutritionRecord(id:)Get a specific nutrition record by ID
updateNutritionRecordServingSize(id:, servingSize:)Update serving size for a nutrition record
deleteNutritionRecord(id:)Delete a nutrition record by ID

Analyzing Food Images

Synchronous Processing

Use synchronous analysis when you want to wait for the complete nutritional analysis before proceeding. This is ideal for scenarios where you need immediate results and can display a loading indicator.
import 'dart:convert';
import 'dart:io';
import 'package:spike_flutter_sdk/spike_flutter_sdk.dart';

// Capture image from camera or gallery and convert to base64
final File imageFile = // ... captured from camera or gallery
final bytes = await imageFile.readAsBytes();
final imageBase64 = base64Encode(bytes);

try {
  final record = await spikeConnection.analyzeNutrition(
    imageBase64: imageBase64,
    consumedAt: DateTime.now(),
    config: NutritionalAnalysisConfig(
      analysisMode: NutritionRecordAnalysisMode.precise,
      countryCode: 'us',
      languageCode: 'en',
      includeNutriScore: true,
      includeDishDescription: true,
      includeIngredients: true,
      includeNutritionFields: [
        NutritionalField.energyKcal,
        NutritionalField.proteinG,
        NutritionalField.fatTotalG,
        NutritionalField.carbohydrateG,
      ],
    ),
  );

  print('Dish: ${record.dishName ?? "Unknown"}');
  print('Serving size: ${record.servingSize ?? 0} ${record.unit?.toJson() ?? "g"}');
  print('Calories: ${record.nutritionalFields?["energy_kcal"] ?? 0}');
} catch (e) {
  print('Analysis failed: $e');
}
You can also call with minimal parameters (config is optional):
// Using defaults - only imageBase64 is required
final record = await spikeConnection.analyzeNutrition(
  imageBase64: imageBase64,
);
Processing Time: Synchronous processing takes some time depending on image complexity. Consider showing a loading indicator to users. If you see that the analysis is taking too long, the recommendation is to use asynchronous processing instead.

Asynchronous Processing

Use asynchronous processing when you want an immediate response without waiting for the analysis to complete. Record ID is returned. The image is processed in the background, and you can retrieve results later by requesting nutrition analysis using the record ID or receive them via webhook.
try {
  // Submit image for background processing
  final recordId = await spikeConnection.submitNutritionForAnalysis(
    imageBase64: imageBase64,
    consumedAt: DateTime.now(),
    config: NutritionalAnalysisConfig(
      analysisMode: NutritionRecordAnalysisMode.fast,
      countryCode: null,
      languageCode: null,
      includeNutriScore: null,
      includeDishDescription: null,
      includeIngredients: true,
      includeNutritionFields: null,
    ),
  );

  print('Analysis started. Record ID: $recordId');

  // Optionally, poll for results later
  // Your backend will also receive a webhook when analysis completes

} catch (e) {
  print('Failed to submit: $e');
}

Retrieving Results Asynchronously

After submitting an image for asynchronous processing, you can retrieve the results using the record ID. Check the processing status for completion success.
// Check the status and get results
final record = await spikeConnection.getNutritionRecord(id: recordId);

if (record != null) {
  switch (record.status) {
    case NutritionRecordStatus.completed:
      print('Analysis complete: ${record.dishName ?? "Unknown"}');
      break;
    case NutritionRecordStatus.processing:
      print('Still processing...');
      break;
    case NutritionRecordStatus.pending:
      print('Queued for processing...');
      break;
    case NutritionRecordStatus.failed:
      print('Analysis failed: ${record.failureReason ?? "Unknown error"}');
      break;
    case NutritionRecordStatus.unknown:
      print('Unknown status');
      break;
  }
}
For real-time notifications, configure webhooks in your admin console. Your backend will receive a webhook notification when the analysis completes. See Asynchronous Processing for webhook implementation details.

Configuration Options

Customize the analysis using NutritionalAnalysisConfig:
final config = NutritionalAnalysisConfig(
  // Analysis speed vs. precision
  analysisMode: NutritionRecordAnalysisMode.precise,  // precise (default) or fast
  
  // Country ISO 3166-1 alpha-2 code in lowercase
  countryCode: 'us',

  // Language ISO 639-1 code in lowercase
  languageCode: 'en',
  
  // Include Nutri-Score rating (A-E)
  includeNutriScore: true,
  
  // Include dish description
  includeDishDescription: true,
  
  // Include detailed breakdown of ingredients
  includeIngredients: true,
  
  // Specify which nutritional fields to include
  includeNutritionFields: [
    NutritionalField.energyKcal,
    NutritionalField.proteinG,
    NutritionalField.fatTotalG,
    NutritionalField.carbohydrateG,
    NutritionalField.fiberTotalDietaryG,
    NutritionalField.sodiumMg,
  ],
);

final record = await spikeConnection.analyzeNutrition(
  imageBase64: imageBase64,
  consumedAt: DateTime.now(),
  config: config,
);

NutritionalAnalysisConfig

class NutritionalAnalysisConfig {
  /// A preferred mode for the analysis. Default is precise.
  final NutritionRecordAnalysisMode? analysisMode;
  /// Country ISO 3166-1 alpha-2 code in lowercase
  final String? countryCode;
  /// Language ISO 639-1 code in lowercase
  final String? languageCode;
  /// Include nutri-score label of the food. Default is false.
  final bool? includeNutriScore;
  /// Include dish description of the food. Default is false.
  final bool? includeDishDescription;
  /// Include ingredients of the food. Default is false.
  final bool? includeIngredients;
  /// Include specific nutrition fields in the analysis report.
  /// By default, carbohydrate_g, energy_kcal, fat_total_g and protein_g will be included.
  final List<NutritionalField>? includeNutritionFields;
}

Analysis Modes

enum NutritionRecordAnalysisMode {
  fast,
  precise
}
ModeDescription
preciseUses advanced AI models for highest accuracy and detailed analysis (default)
fastUses optimized models for quicker processing with good accuracy

Default Nutritional Fields

If includeNutritionFields is not specified, only these basic fields are included:
  • energyKcal
  • proteinG
  • fatTotalG
  • carbohydrateG
See Nutritional Fields Reference for all available fields.

Managing Nutrition Records

List Records by Date Range

Retrieve all nutrition records within a specified date range:
final now = DateTime.now();
final startDate = now.subtract(const Duration(days: 7));
final endDate = now;

try {
  final records = await spikeConnection.getNutritionRecords(
    from: startDate,
    to: endDate,
  );

  for (final record in records) {
    final consumedAt = record.consumedAt?.toString() ?? 'Unknown date';
    final size = record.servingSize ?? 0;
    final unit = record.unit?.toJson() ?? 'g';
    print('$consumedAt: ${record.dishName ?? "Unknown"} - $size$unit');
  }
} catch (e) {
  print('Failed to fetch records: $e');
}

Get a Specific Record

Retrieve a single nutrition record by its ID:
try {
  final record = await spikeConnection.getNutritionRecord(id: recordId);

  if (record != null) {
    print('Dish: ${record.dishName ?? "Unknown"}');
    print('Nutri-Score: ${record.nutriScore ?? "N/A"}');

    // Access nutritional values
    final calories = record.nutritionalFields?['energy_kcal'];
    if (calories != null) {
      print('Calories: $calories kcal');
    }

    // Access ingredients if included
    for (final ingredient in record.ingredients ?? []) {
      print('- ${ingredient.name}: ${ingredient.servingSize}${ingredient.unit.toJson()}');
    }
  } else {
    print('Record not found');
  }
} catch (e) {
  print('Failed to fetch record: $e');
}

Update Serving Size

Adjust the serving size of an existing record. All nutritional values are automatically recalculated proportionally:
try {
  final updatedRecord = await spikeConnection.updateNutritionRecordServingSize(
    id: recordId,
    servingSize: 200.0,  // New serving size in grams
  );

  print('Updated serving size: ${updatedRecord.servingSize ?? 0}${updatedRecord.unit?.toJson() ?? "g"}');
  print('Recalculated calories: ${updatedRecord.nutritionalFields?["energy_kcal"] ?? 0}');
} catch (e) {
  print('Failed to update record: $e');
}

Delete a Record

Permanently remove a nutrition record (success status is returned regardless record is found or not):
try {
  await spikeConnection.deleteNutritionRecord(id: recordId);
  print('Record deleted successfully');
} catch (e) {
  print('Failed to delete record: $e');
}

Response Data

NutritionRecord

The NutritionRecord class contains the analysis results:
class NutritionRecord {
  /// Report record ID
  final String recordId;
  /// Processing status
  final NutritionRecordStatus status;
  /// Detected dish name
  final String? dishName;
  /// Detected dish description
  final String? dishDescription;
  /// Dish name translated to target language
  final String? dishNameTranslated;
  /// Dish description translated to target language
  final String? dishDescriptionTranslated;
  /// Nutri-Score known as the 5-Colour Nutrition label (A-E)
  final String? nutriScore;
  /// Reason for processing failure
  final String? failureReason;
  /// Serving size in metric units
  final num? servingSize;
  /// Metric unit (g for solids, ml for liquids)
  final NutritionalUnit? unit;
  /// Nutritional values as key-value pairs
  final Map<String, num>? nutritionalFields;
  /// List of detected ingredients with nutritional information
  final List<NutritionRecordIngredient>? ingredients;
  /// Upload timestamp in UTC
  final DateTime uploadedAt;
  /// Update timestamp in UTC
  final DateTime modifiedAt;
  /// The UTC time when food was consumed
  final DateTime? consumedAt;
}

NutritionRecordStatus

enum NutritionRecordStatus {
  pending,
  processing,
  completed,
  failed,
  /// Unknown value was sent from API. SDK should be updated.
  unknown
}

NutritionalUnit

enum NutritionalUnit {
  g,      // grams
  mg,     // milligrams
  mcg,    // micrograms
  ml,     // milliliters
  kcal,   // kilocalories
  unknown
}

NutritionRecordIngredient

class NutritionRecordIngredient {
  /// Ingredient name using LANGUAL standard terminology
  final String name;
  /// Ingredient name translated to target language
  final String? nameTranslated;
  /// Serving size in metric units
  final num servingSize;
  /// Metric unit (g for solids, ml for liquids)
  final NutritionalUnit unit;
  /// Nutritional values as key-value pairs
  final Map<String, num>? nutritionalFields;
}

NutritionalField

Use this enum to specify which nutritional fields to include in the analysis:
enum NutritionalField {
  energyKcal,           // energy_kcal
  carbohydrateG,        // carbohydrate_g
  proteinG,             // protein_g
  fatTotalG,            // fat_total_g
  fatSaturatedG,        // fat_saturated_g
  fatPolyunsaturatedG,  // fat_polyunsaturated_g
  fatMonounsaturatedG,  // fat_monounsaturated_g
  fatTransG,            // fat_trans_g
  fiberTotalDietaryG,   // fiber_total_dietary_g
  sugarsTotalG,         // sugars_total_g
  cholesterolMg,        // cholesterol_mg
  sodiumMg,             // sodium_mg
  potassiumMg,          // potassium_mg
  calciumMg,            // calcium_mg
  ironMg,               // iron_mg
  magnesiumMg,          // magnesium_mg
  phosphorusMg,         // phosphorus_mg
  zincMg,               // zinc_mg
  vitaminARaeMcg,       // vitamin_a_rae_mcg
  vitaminCMg,           // vitamin_c_mg
  vitaminDMcg,          // vitamin_d_mcg
  vitaminEMg,           // vitamin_e_mg
  vitaminKMcg,          // vitamin_k_mcg
  thiaminMg,            // thiamin_mg
  riboflavinMg,         // riboflavin_mg
  niacinMg,             // niacin_mg
  vitaminB6Mg,          // vitamin_b6_mg
  folateMcg,            // folate_mcg
  vitaminB12Mcg         // vitamin_b12_mcg
}

Error Handling

All nutrition methods return Future objects that can throw exceptions. Always wrap calls in try-catch blocks:
try {
  final record = await spikeConnection.analyzeNutrition(
    imageBase64: imageBase64,
    consumedAt: DateTime.now(),
  );
  // Handle success
} on SpikeException catch (e) {
  print('Spike error: ${e.message}');
} catch (e) {
  print('Unexpected error: $e');
}

Common Error Scenarios

ErrorCause
Invalid image formatImage is not JPEG, PNG, or WebP
Image too largeBase64-encoded image exceeds 10MB
Image too smallImage is smaller than 512×512 pixels
UnauthorizedInvalid or expired authentication token
Analysis timeoutAI processing took too long
UnidentifiableNon-food image

Image Guidelines

For optimal analysis results, guide your users to capture images that:
  1. Center the food — capture the plate contents as the main subject
  2. Fill the frame — ensure the meal occupies most of the image
  3. Use proper lighting — natural or bright lighting works best
  4. Avoid obstructions — remove packaging and minimize utensils in frame
  5. Skip filters — avoid filters that alter the food’s appearance
See Image Guidelines for complete recommendations.

Best Practices

1. Request Only What You Need

Each additional field, ingredient breakdown, or optional data increases processing time. Only request what your app actually uses:
// ❌ Don't request everything "just in case"
final config = NutritionalAnalysisConfig(
  analysisMode: null,
  countryCode: null,
  languageCode: null,
  includeNutriScore: true,
  includeDishDescription: true,
  includeIngredients: true,
  includeNutritionFields: NutritionalField.values,  // All 29 fields
);

// ✅ Request only what you need
final config = NutritionalAnalysisConfig(
  includeNutritionFields: [
    NutritionalField.energyKcal,
    NutritionalField.proteinG,
    NutritionalField.carbohydrateG,
    NutritionalField.fatTotalG,
  ],
);

2. Consider your actual UI requirements:

  • Do you display ingredients? If not, skip includeIngredients.
  • Do you show Nutri-Score? If not, skip includeNutriScore.
  • Which nutritional values do you actually display? Request only those.

3. Choose the Right Processing Mode

  • Synchronous (analyzeNutrition): Use when you need immediate results and can show a loading state
  • Asynchronous (submitNutritionForAnalysis): Use for better UX when you don’t need immediate results, or when processing multiple images

4. Handle All Status Values

When using asynchronous processing, always check the record status before accessing results:
final record = await spikeConnection.getNutritionRecord(id: recordId);

if (record == null) {
  // Handle not found
  return;
}

if (record.status != NutritionRecordStatus.completed) {
  if (record.status == NutritionRecordStatus.failed) {
    // Handle failure
    print('Failed: ${record.failureReason}');
  } else {
    // Still processing
    print('Status: ${record.status}');
  }
  return;
}

// Safe to access results
print('Dish: ${record.dishName}');

5. Implement Webhook Handling

For production apps using asynchronous processing, implement webhook handling on your backend to receive real-time notifications when analysis completes.

6. Create Reusable Configuration

If you’re using the same settings across your app, create a shared configuration helper:
// nutrition_config.dart
import 'package:spike_flutter_sdk/spike_flutter_sdk.dart';

class NutritionConfig {
  static final standard = NutritionalAnalysisConfig(
    analysisMode: NutritionRecordAnalysisMode.precise,
    countryCode: null,
    languageCode: null,
    includeNutriScore: true,
    includeDishDescription: null,
    includeIngredients: true,
    includeNutritionFields: [
      NutritionalField.energyKcal,
      NutritionalField.proteinG,
      NutritionalField.fatTotalG,
      NutritionalField.carbohydrateG,
      NutritionalField.fiberTotalDietaryG,
    ],
  );
}

// Usage
final record = await spikeConnection.analyzeNutrition(
  imageBase64: imageBase64,
  consumedAt: DateTime.now(),
  config: NutritionConfig.standard,
);