About
The Spike SDK provides a convenient interface for the Nutrition AI API, allowing you to analyze food images directly from your Android application. The SDK handles image encoding, API communication, and response parsing, making it easy to integrate nutritional analysis into your app.
All Spike SDK suspending methods should be called from a coroutine scope and wrapped in try-catch blocks. See Error Handling for details.
Key Features
- AI-Powered Analysis — advanced computer vision for food identification and nutritional calculations
- Flexible Processing — choose between synchronous (wait for results) or asynchronous (background) processing
Bitmap Support — convenient methods that accept Bitmap directly, in addition to base64-encoded strings
- Complete Record Management — retrieve, update, and delete nutrition records
Available Methods
| Method | Description |
|---|
analyzeNutrition(image, consumedAt, config) | Submit food image for synchronous processing and wait for the analysis results |
submitNutritionForAnalysis(image, consumedAt, config) | Submit food image for asynchronous processing and get record ID immediately for polling afterwards |
getNutritionRecords(from, to) | Retrieve nutrition records for a datetime range |
getNutritionRecord(id) | Get a specific nutrition record by ID |
updateNutritionRecordServingSize(id, servingSize) | Update serving size for a nutrition record |
deleteNutritionRecord(id) | Delete a nutrition record by ID |
Analyzing Food Images
Synchronous Processing
Use synchronous analysis when you want to wait for the complete nutritional analysis before proceeding. This is ideal for scenarios where you need immediate results and can display a loading indicator.
import com.spikeapi.apiv3.SpikeConnectionAPIv3
import com.spikeapi.apiv3.datamodels.*
import java.time.Instant
// image: Bitmap - captured from camera or photo library
val image: Bitmap = // ... captured from camera or gallery
try {
val record = spikeConnection.analyzeNutrition(
image = image,
consumedAt = Instant.now(),
config = NutritionalAnalysisConfig(
analysisMode = NutritionRecordAnalysisMode.PRECISE,
countryCode = null,
languageCode = null,
includeNutriScore = true,
includeDishDescription = true,
includeIngredients = true,
includeNutritionFields = listOf(
NutritionalField.ENERGY_KCAL,
NutritionalField.PROTEIN_G,
NutritionalField.FAT_TOTAL_G,
NutritionalField.CARBOHYDRATE_G
)
)
)
println("Dish: ${record.dishName ?: "Unknown"}")
println("Serving size: ${record.servingSize ?: 0} ${record.unit?.value ?: "g"}")
println("Calories: ${record.nutritionalFields?.get("energy_kcal") ?: 0}")
} catch (e: Exception) {
println("Analysis failed: ${e.message}")
}
You can also use base64-encoded image data:
// Using base64-encoded string
val outputStream = ByteArrayOutputStream()
image.compress(Bitmap.CompressFormat.JPEG, 80, outputStream)
val base64String = Base64.encodeToString(outputStream.toByteArray(), Base64.NO_WRAP)
val record = spikeConnection.analyzeNutrition(
imageBase64 = base64String,
consumedAt = Instant.now(),
config = null // Uses default configuration
)
Processing Time: Synchronous processing takes some time depending on image complexity. Consider showing a loading indicator to users. If you see that the analysis is taking too long, the recommendation is to use asynchronous processing instead.
Asynchronous Processing
Use asynchronous processing when you want an immediate response without waiting for the analysis to complete. Record ID is returned.
The image is processed in the background, and you can retrieve results later by requesting nutrition analysis using the record ID or receive them via webhook.
try {
// Submit image for background processing
val recordId: UUID = spikeConnection.submitNutritionForAnalysis(
image = image,
consumedAt = Instant.now(),
config = NutritionalAnalysisConfig(
analysisMode = NutritionRecordAnalysisMode.FAST,
countryCode = null,
languageCode = null,
includeNutriScore = null,
includeDishDescription = null,
includeIngredients = true,
includeNutritionFields = null
)
)
println("Analysis started. Record ID: $recordId")
// Optionally, poll for results later
// Your backend will also receive a webhook when analysis completes
} catch (e: Exception) {
println("Failed to submit: ${e.message}")
}
Retrieving Results Asynchronously
After submitting an image for asynchronous processing, you can retrieve the results using the record ID. Check the processing status for completion success.
// Check the status and get results
val record = spikeConnection.getNutritionRecord(id = recordId)
if (record != null) {
when (record.status) {
NutritionRecordStatus.COMPLETED -> {
println("Analysis complete: ${record.dishName ?: "Unknown"}")
}
NutritionRecordStatus.PROCESSING -> {
println("Still processing...")
}
NutritionRecordStatus.PENDING -> {
println("Queued for processing...")
}
NutritionRecordStatus.FAILED -> {
println("Analysis failed: ${record.failureReason ?: "Unknown error"}")
}
NutritionRecordStatus.UNKNOWN -> {
println("Unknown status")
}
}
}
For real-time notifications, configure webhooks in your admin console. Your backend will receive a webhook notification when the analysis completes. See Asynchronous Processing for webhook implementation details.
Configuration Options
Customize the analysis using NutritionalAnalysisConfig:
val config = NutritionalAnalysisConfig(
// Analysis speed vs. precision
analysisMode = NutritionRecordAnalysisMode.PRECISE, // PRECISE (default) or FAST
// Country ISO 3166-1 alpha-2 code in lowercase
countryCode = "us",
// Language ISO 639-1 code in lowercase
languageCode = "en",
// Include Nutri-Score rating (A-E)
includeNutriScore = true,
// Include dish description
includeDishDescription = true,
// Include detailed breakdown of ingredients
includeIngredients = true,
// Specify which nutritional fields to include (using NutritionalField enum)
includeNutritionFields = listOf(
NutritionalField.ENERGY_KCAL,
NutritionalField.PROTEIN_G,
NutritionalField.FAT_TOTAL_G,
NutritionalField.CARBOHYDRATE_G,
NutritionalField.FIBER_TOTAL_DIETARY_G,
NutritionalField.SODIUM_MG
)
)
NutritionalAnalysisConfig
data class NutritionalAnalysisConfig(
/** A preferred mode for the analysis. Default is PRECISE. */
val analysisMode: NutritionRecordAnalysisMode?,
/** Country ISO 3166-1 alpha-2 code in lowercase */
val countryCode: String?,
/** Language ISO 639-1 code in lowercase */
val languageCode: String?,
/** Include nutri-score label of the food. Default is false. */
val includeNutriScore: Boolean?,
/** Include dish description of the food. Default is false. */
val includeDishDescription: Boolean?,
/** Include ingredients of the food. Default is false. */
val includeIngredients: Boolean?,
/**
* Include specific nutrition fields in the analysis report.
* By default, carbohydrate_g, energy_kcal, fat_total_g and protein_g will be included.
*/
val includeNutritionFields: List<NutritionalField>?
)
Analysis Modes
enum class NutritionRecordAnalysisMode(val value: String) {
FAST("fast"),
PRECISE("precise")
}
| Mode | Description |
|---|
PRECISE | Uses advanced AI models for highest accuracy and detailed analysis (default) |
FAST | Uses optimized models for quicker processing with good accuracy |
Default Nutritional Fields
If includeNutritionFields is not specified, only these basic fields are included:
ENERGY_KCAL
PROTEIN_G
FAT_TOTAL_G
CARBOHYDRATE_G
See Nutritional Fields Reference for all available fields
or check the API Reference for Kotlin enum values.
Managing Nutrition Records
List Records by Date Range
Retrieve all nutrition records within a specified date range:
import java.time.Instant
import java.time.temporal.ChronoUnit
val endDate = Instant.now()
val startDate = endDate.minus(7, ChronoUnit.DAYS)
try {
val records = spikeConnection.getNutritionRecords(
from = startDate,
to = endDate
)
for (record in records) {
val consumedAt = record.consumedAt?.toString() ?: "Unknown date"
val size = record.servingSize ?: 0.0
val unit = record.unit?.value ?: "g"
println("$consumedAt: ${record.dishName ?: "Unknown"} - $size$unit")
}
} catch (e: Exception) {
println("Failed to fetch records: ${e.message}")
}
Get a Specific Record
Retrieve a single nutrition record by its ID:
try {
val record = spikeConnection.getNutritionRecord(id = recordId)
if (record != null) {
println("Dish: ${record.dishName ?: "Unknown"}")
println("Nutri-Score: ${record.nutriScore ?: "N/A"}")
// Access nutritional values
record.nutritionalFields?.get("energy_kcal")?.let { calories ->
println("Calories: $calories kcal")
}
// Access ingredients if included
record.ingredients?.forEach { ingredient ->
println("- ${ingredient.name}: ${ingredient.servingSize}${ingredient.unit.value}")
}
} else {
println("Record not found")
}
} catch (e: Exception) {
println("Failed to fetch record: ${e.message}")
}
Update Serving Size
Adjust the serving size of an existing record. All nutritional values are automatically recalculated proportionally:
try {
val updatedRecord = spikeConnection.updateNutritionRecordServingSize(
id = recordId,
servingSize = 200.0 // New serving size in grams
)
println("Updated serving size: ${updatedRecord.servingSize ?: 0}${updatedRecord.unit?.value ?: "g"}")
println("Recalculated calories: ${updatedRecord.nutritionalFields?.get("energy_kcal") ?: 0}")
} catch (e: Exception) {
println("Failed to update record: ${e.message}")
}
Delete a Record
Permanently remove a nutrition record (success status is returned regardless record is found or not):
try {
spikeConnection.deleteNutritionRecord(id = recordId)
println("Record deleted successfully")
} catch (e: Exception) {
println("Failed to delete record: ${e.message}")
}
Response Data
NutritionRecord
The NutritionRecord data class contains the analysis results:
data class NutritionRecord(
/** Report record ID */
val recordId: UUID,
/** Processing status */
val status: NutritionRecordStatus,
/** Detected dish name */
val dishName: String?,
/** Detected dish description */
val dishDescription: String?,
/** Dish name translated to target language */
val dishNameTranslated: String?,
/** Dish description translated to target language */
val dishDescriptionTranslated: String?,
/** Nutri-Score known as the 5-Colour Nutrition label (A-E) */
val nutriScore: String?,
/** Reason for processing failure */
val failureReason: String?,
/** Serving size in metric units */
val servingSize: Double?,
/** Metric unit (g for solids, ml for liquids) */
val unit: NutritionalUnit?,
val nutritionalFields: Map<String, Double>?,
/** List of detected ingredients with nutritional information */
val ingredients: List<NutritionRecordIngredient>?,
/** Upload timestamp in UTC */
val uploadedAt: Instant,
/** Update timestamp in UTC */
val modifiedAt: Instant,
/** The UTC time when food was consumed */
val consumedAt: Instant?
)
NutritionRecordStatus
enum class NutritionRecordStatus(val value: String) {
PENDING("pending"),
PROCESSING("processing"),
COMPLETED("completed"),
FAILED("failed"),
UNKNOWN("_unknown") // Unknown value was sent from API. SDK should be updated to use the newest API responses.
}
NutritionalUnit
enum class NutritionalUnit(val value: String) {
G("g"), // grams
MG("mg"), // milligrams
MCG("mcg"), // micrograms
ML("ml"), // milliliters
KCAL("kcal"), // kilocalories
UNKNOWN("_unknown") // Unknown value was sent from API. SDK should be updated to use the newest API responses.
}
NutritionRecordIngredient
data class NutritionRecordIngredient(
/** Ingredient name using LANGUAL standard terminology */
val name: String,
/** Ingredient name translated to target language */
val nameTranslated: String?,
/** Serving size in metric units */
val servingSize: Double,
/** Metric unit (g for solids, ml for liquids) */
val unit: NutritionalUnit,
val nutritionalFields: Map<String, Double>?
)
NutritionalField
Use this enum to specify which nutritional fields to include in the analysis:
enum class NutritionalField(val value: String) {
ENERGY_KCAL("energy_kcal"),
CARBOHYDRATE_G("carbohydrate_g"),
PROTEIN_G("protein_g"),
FAT_TOTAL_G("fat_total_g"),
FAT_SATURATED_G("fat_saturated_g"),
FAT_POLYUNSATURATED_G("fat_polyunsaturated_g"),
FAT_MONOUNSATURATED_G("fat_monounsaturated_g"),
FAT_TRANS_G("fat_trans_g"),
FIBER_TOTAL_DIETARY_G("fiber_total_dietary_g"),
SUGARS_TOTAL_G("sugars_total_g"),
CHOLESTEROL_MG("cholesterol_mg"),
SODIUM_MG("sodium_mg"),
POTASSIUM_MG("potassium_mg"),
CALCIUM_MG("calcium_mg"),
IRON_MG("iron_mg"),
MAGNESIUM_MG("magnesium_mg"),
PHOSPHORUS_MG("phosphorus_mg"),
ZINC_MG("zinc_mg"),
VITAMIN_ARAE_MCG("vitamin_a_rae_mcg"),
VITAMIN_CMG("vitamin_c_mg"),
VITAMIN_DMCG("vitamin_d_mcg"),
VITAMIN_EMG("vitamin_e_mg"),
VITAMIN_KMCG("vitamin_k_mcg"),
THIAMIN_MG("thiamin_mg"),
RIBOFLAVIN_MG("riboflavin_mg"),
NIACIN_MG("niacin_mg"),
VITAMIN_B6MG("vitamin_b6_mg"),
FOLATE_MCG("folate_mcg"),
VITAMIN_B12MCG("vitamin_b12_mcg")
}
Error Handling
All nutrition methods are suspending functions that can throw exceptions. Always wrap calls in try-catch blocks:
import com.spikeapi.SpikeExceptions
try {
val record = spikeConnection.analyzeNutrition(
image = image,
consumedAt = Instant.now(),
config = null
)
// Handle success
} catch (e: SpikeExceptions.SpikeException) {
println("Spike error: ${e.message}")
} catch (e: SpikeExceptions.NetworkException) {
println("Network error: ${e.message}")
} catch (e: SpikeExceptions.AuthenticationException) {
println("Authentication failed: ${e.message}")
} catch (e: Exception) {
println("Unexpected error: ${e.message}")
}
Common Error Scenarios
| Error | Cause |
|---|
| Invalid image format | Image is not JPEG, PNG, or WebP |
| Image too large | Base64-encoded image exceeds 10MB |
| Image too small | Image is smaller than 512×512 pixels |
| Unauthorized | Invalid or expired authentication token |
| Analysis timeout | AI processing took too long |
| Unidentifiable | Non-food image |
Image Guidelines
For optimal analysis results, guide your users to capture images that:
- Center the food — capture the plate contents as the main subject
- Fill the frame — ensure the meal occupies most of the image
- Use proper lighting — natural or bright lighting works best
- Avoid obstructions — remove packaging and minimize utensils in frame
- Skip filters — avoid filters that alter the food’s appearance
See Image Guidelines for complete recommendations.
Best Practices
1. Request Only What You Need
Each additional field, ingredient breakdown, or optional data increases processing time. Only request what your app actually uses:
// ❌ Don't request everything "just in case"
val config = NutritionalAnalysisConfig(
analysisMode = null,
countryCode = null,
languageCode = null,
includeNutriScore = true,
includeDishDescription = true,
includeIngredients = true,
includeNutritionFields = NutritionalField.entries // All 29 fields
)
// ✅ Request only what you need
val config = NutritionalAnalysisConfig(
includeDishDescription = true,
includeNutritionFields = listOf(
NutritionalField.ENERGY_KCAL
)
)
2. Consider your actual UI requirements:
- Do you display ingredients? If not, skip
includeIngredients.
- Do you show Nutri-Score? If not, skip
includeNutriScore.
- Which nutritional values do you actually display? Request only those.
3. Choose the Right Processing Mode
- Synchronous (
analyzeNutrition): Use when you need immediate results and can show a loading state
- Asynchronous (
submitNutritionForAnalysis): Use for better UX when you don’t need immediate results, or when processing multiple images
4. Handle All Status Values
When using asynchronous processing, always check the record status before accessing results:
val record = spikeConnection.getNutritionRecord(id = recordId)
if (record == null) {
// Handle not found
return
}
if (record.status != NutritionRecordStatus.COMPLETED) {
if (record.status == NutritionRecordStatus.FAILED) {
// Handle failure
println("Failed: ${record.failureReason}")
} else {
// Still processing
println("Status: ${record.status}")
}
return
}
// Safe to access results
5. Implement Webhook Handling
For production apps using asynchronous processing, implement webhook handling on your backend to receive real-time notifications when analysis completes.
6. Cache Configuration
Create a shared configuration object if you’re using the same settings across your app:
object NutritionConfig {
val standard = NutritionalAnalysisConfig(
analysisMode = NutritionRecordAnalysisMode.PRECISE,
countryCode = null,
languageCode = null,
includeNutriScore = true,
includeDishDescription = null,
includeIngredients = true,
includeNutritionFields = listOf(
NutritionalField.ENERGY_KCAL,
NutritionalField.PROTEIN_G,
NutritionalField.FAT_TOTAL_G,
NutritionalField.CARBOHYDRATE_G,
NutritionalField.FIBER_TOTAL_DIETARY_G
)
)
}
// Usage
val record = spikeConnection.analyzeNutrition(
image = image,
consumedAt = Instant.now(),
config = NutritionConfig.standard
)